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Introduction

“Programmers waste enormous amounts of  time
thinking about, or worrying about, the speed of  non-
critical parts of  their programs, and these attempts
at efficiency actually have a strong negative impact
when debugging and maintenance are considered.
We should forget about small efficiencies, say about
97% of  the time; premature optimization is the
root of all evil. Yet we should not pass up our op-
portunities in that critical 3%.”

Donald Knuth, Structured Programming With go to
Statements

The trickiest part of  speeding up a program is not doing it,
but deciding whether it’s worth doing at all. There are few clear
principles, only rules of  thumb.

Part of  the problem is that optimization is hard to do well.
It’s frighteningly easy to devolve into superstitious ritual and
rationalization. Then again, there can be big payoffs hidden in
surprising places. That’s why expert advice about performance
tends to have a gnomic, self-contradictory flavor: “If  you don’t
know what you are doing, don’t do it! You’ll know if  you know
what you are doing. And remember to design your programs
for performance.” The experts are acutely worried about en-
couraging more folly, yet can’t quite bring themselves to ignore
the possible gains.

Knuth’s famous quote about premature optimization was
never meant to be a stick to beat people over the head with.
It’s a witty remark he tossed off  in the middle of  a keen obser-
vation about leverage, which itself  is embedded in a nuanced,
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evenhanded passage about, of  all things, using gotos for fast and
readable code. The final irony is that the whole paper was an
earnest attempt to caution against taking Edsger Dijkstra’s in-
famous remark about gotos too seriously. It’s a wonder we risk
saying anything at all about this stuff.

Structured Programming With go to Statements does make two
valuable points about performance. Optimizing without mea-
surement to guide you is foolish. So is trying to optimize ev-
erything. The biggest wins tend to be concentrated in a small
portion of  the code, “that critical 3%”, which can be found via
careful measurement.

While a proper measurement regime can tell you where op-
timization is likely to succeed, it says little about whether do-
ing it is worthwhile. Knuth ultimately shoves that responsibil-
ity onto a hypothetical “good” and “wise” programmer, who
is able to look past the witty remarks and dire warnings and
decide on the merits. Great, but how?

I don’t know either. Performance optimization is, or should
be, a cost/benefit decision. It’s made in the same way you de-
cide just how much effort to put into other cross-cutting aspects
of  a system like security and testing. There is such a thing as
too much testing, too much refactoring, too much of  anything
good. In my experience, it makes most sense on mature systems
whose architectures have settled down.

The age of  a piece of  code is the single greatest predictor
of  how long it will live. Stastically speaking, you encounter a
piece of  code somewhere in the middle of  its lifespan. If  it’s
one month old, the odds are good it will be rewritten in another
month. A five-year-old function is not “ready to be rewritten”,
it’s just getting started on a long career. New code is almost
by definition slow code, but it’s also likely to be ripped out and
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replaced as a young program slouches towards beta-test. Unless
your optimizations are going to stick around long enough to
pay for the time you spend making them plus the opportunity
cost of  not doing something else, it’s a net loss.

Optimization also makes sense when it’s needed for a pro-
gram to ship. Performance is a feature when your system has
unusually limited resources to play with or when it’s hard to
change the software after the fact. This is common in games
programming, and is making something of  a comeback with
the rise of  mobile computing.

Even with all that, there are no guarantees. In the early 2000s
I helped build a system for search advertising. We didn’t have
a lot of  money so we were constantly tweaking the system for
more throughput. The former CTO of  one of  our competitors,
looking over our work, noted that we were handling ten times
the traffic per server than he had. Unfortunately, we had spent
so much time worrying about performance that we didn’t pay
enough attention to credit card fraud. Fraud and chargebacks
got very bad very quickly, and soon after our company went
bankrupt. On one hand, we had pulled off  a remarkable en-
gineering feat. On the other hand, we were fixing the wrong
problem.

The dusty warning signs placed around performance work
are there for a reason. That reason may sting a little, because it
boils down to “you are probably not wise enough to use these
tools correctly”. If  you are at peace with that, read on. There
are many more pitfalls ahead.
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1: Defining the Problem

“First, catch the rabbit.”

a recipe for rabbit stew

Before you can optimize anything you need a way to mea-
sure what you are optimizing. Otherwise you are just shooting
in the dark. Before you can measure you need a clear, explicit
statement of  the problem you are trying to solve. Otherwise, in
a very real sense, you don’t know what you are doing.

Problem definitions often can be taken off  the shelf. They
are a lot like recipes. Many people have been this way before
and there is a large body of  knowledge available to you. There’s
nothing magical or hard to understand; the key is to be explicit
about the recipe you are following.

It’s impossible to clearly define the problem of  clearly defin-
ing the problem. But there is a way to judge the quality of  a
recipe. It must be specific enough to suggest a fix, and have an
unambiguous way to tell whether the fix worked. A problem
definition must be falsifiable. You have to risk being wrong to
have a chance at gaining the truth. Let’s start with a bad defi-
nition and make it better.

“WidgetFactoryServer is too slow.”

What does “slow” mean here? It could be that it takes so
long that a human notices (eg, more than 350 milliseconds)
or that some consumer of  WFS times out while waiting for
a response, or perhaps it shows up on some measure of  slow
components. “Too slow” is a judgement about walltime, ie time
passing according to the clock on the wall.
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Two things generally contribute to walltime: computation
on the local CPU and time spent waiting for data from storage
or the network. You wrote WFS so you know that it doesn’t
read from disk or network. Another contributor in threaded
code is waiting for locks, but WFS isn’t threaded. So it’s proba-
bly all in computation. This fits a familiar pattern. We can use
a ready-made problem definition.

“WidgetFactoryServer is transactional. It receives
requests and emits responses. It is probably CPU-
bound. So if  we profile to discover which functions
take up the most time, and optimize those, the total
CPU time per transaction should decrease.”

Good enough. It states a thesis about what resource is bot-
tlenecked, suggests a method of  finding the right places to opti-
mize, and is clear about what result you expect to see. Happily,
since we’re already measuring CPU, there’s no need for a sep-
arate measurement to test the result.

The actual optimization is almost anticlimactic. Alicia’s pro-
filing finds that the most expensive function call in WFS has a
bit of  clowniness in a tight loop, say it iterates a list of  valid
WidgetTypes over and over again, or recalculates a value that
can be calculated once. Once she sees it, the fix is obvious and
testable. The CPU time drops and there is much rejoicing.

Now the trouble starts
There is a rich & vibrant oral tradition about how to write fast
programs, and almost all of  it is horseshit. It’s here in the after-
glow of  success that it takes root. Alicia finds that eliminating a
piece of  code that iterates WidgetTypes speeds up the program
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by 10%. She spends the next two weeks searching for this pat-
tern and “optimizing” wherever she finds it. “Iterating Widget-
Types is slow!” she tells her fellow coders. That might be tech-
nically true, but does it matter? Are those other instances in the
critical path? Do they show up in the measurements? Probably
not. Yet another folk remedy is born. After all, it worked once.

All of  this define-the-problem-then-measure stuff  isn’t like
a set of  training wheels you cast off  once you’ve learned how
to ride on your own. You really do have to approach every act
of  optimization as an experiment, starting over from scratch,
making every assumption explicit and testable.

Computer systems are astoundingly complex, and it’s silly to
generalize too much from a given a performance bug. “We con-
figured the number of  threads to be twice the number of  cores
and saw this speedup” is good science, but it is not the same
as “If  you up the threads to 2X cores you will see a speedup”.
Wishing doesn’t make it so.

“I once generalized from a single data point, and
I’ll never do that again!”

Achilles the Logician, Lauren Ipsum

The lessons learned from past optimizations aren’t useless.
They can hint very strongly at where to look. But we are never
justified in trusting them blindly the way we trust, say, gravity.
If  someone gives you a performance tip, ask for the data. If  they
show you a benchmark, dig into the methodology. If  they tell
you “X is slow” or “Y is fast”, take it under advisement. Then
measure it yourself, every time.
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2: Flying By Instruments

“It is often a mistake to make a priori judgments
about what parts of  a program are really critical,
since the universal experience of  programmers who
have been using measurement tools has been that
their intuitive guesses fail.”

Donald Knuth, Structured Programming With go to
Statements

The scariest part of  flying a plane is learning to trust your
instruments. Humans are very bad at judging distance and ori-
entation in three dimensions, even pilots. When your eyes and
inner ear are telling you one thing and the ground is telling you
another, the ground wins every time. You have to accept that
there are very real human limitations that cannot be overcome
by talent or practice.

In a similar way, performance work depends on “flying” by
measurement. Humans are bad at predicting the performance
of  complex systems, even programmers. Especially the program-
mers. Our ability to create large & complex systems fools us
into believing that we’re also entitled to understand them. I
call it the Creator Bias, and it’s our number-one occupational
disease. Very smart programmers try to optimize or debug or
capacity-plan without good data, and promptly fall right out of
the sky.

How a program works and how it performs are very different
things. If  you write a program or build a system, then of  course
you know how it works. You can explain its expected behav-
ior, logical flow, and computational complexity. A large part
of  programming is playing computer in your head. It’s kind
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of  our thing. By all means, use your brain and your training to
guide you; it’s good to make predictions. But not all predictions
are good. Never forget that our human-scale understanding of
what’s supposed to happen is only a very rough approximation
of  what actually does happen, in the real world on real hard-
ware over real users and data.

The Big O
You may remember this chart from school. It shows the vast
divide between the running times of  different orders of  com-
putational complexity. O(N2) so completely dominates O(N)
that the coefficients hardly matter. This is a deep and impor-
tant concept. Without complexity analysis we would waste a
lot more CPU cycles than we already do.

While this chart says something absolutely true, it implies
something else which is false. Looking at this graph it’s easy
to convince yourself  that complexity analysis is all you need to
know about performance, that the rest is just a rounding error.

In the real world, Big-O complexity is almost never the rea-
son your program is slow. Look at the slope of  the N-squared
curve. In all probability, either N is so small that it doesn’t re-
ally matter, or N is so large and its effects so obvious that any
program with that kind of  bug gets fixed quickly.

12



That means the stuff  you have to contend with is the stuff
your professor told you to ignore: coefficients, constant factors,
and variability. Going from O(N2) to O(N) is easy in the sense
that you can do it on a whiteboard via pure analysis. Complex-
ity bugs are fun and straightforward to teach, so that’s what’s
taught. But how do you take an existing program from 2N to
1N? How do you know what the coefficient even is? (Just how
high is that mountain, anyway? Will you clear it?)

Here, the Creator Bias kicks in again. Why not just analyze
the program more deeply? I’m smart; coefficients don’t sound
that hard. The only problem with this approach is that you have
to throw in everything: the language, the compiler that imple-
ments the language, the operating system and the hardware, all
the data, and a lot more.

Imagine two computers with identical software, configura-
tion, environmental conditions, and hardware specs. The only
difference is that one has four 4GB memory chips and the other
has one 16GB chip. Under many –but not all– workloads there
will be a measurable difference in the throughput of  these two
systems. Even if  you understand why that can happen, your
guess is as good as mine (ie, useless) as to what the actual dif-
ference will be. It depends on every other aspect of  the system.

The more detailed you make a model of  a program, the
more it becomes a slow, buggy simulation of  that program. It
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doesn’t matter how smart you are; it’s a direct consequence of
the Halting Problem. That’s what Turing equivalence means.
That’s why being good at programming requires being good at
playing computer. So you have to ask yourself  a serious ques-
tion: who’s better than you at playing computer? Right. The
computer.

In other words, learn to trust your instruments. If  you want
to know how a program behaves, your best bet is to run it and
see what happens.

Even with measurements in hand, old habits are hard to
shake. It’s easy to fall in love with numbers that seem to agree
with you. It’s just as easy to grope for reasons to write off  num-
bers that violate your expectations. Those are both bad, com-
mon biases. Don’t just look for evidence to confirm your the-
ory. Test for things your theory predicts should never happen.
If  the theory is correct, it should easily survive the evidential
crossfire of  positive and negative tests. If  it’s not you’ll find out
that much quicker. Being wrong efficiently is what science is all
about.

Your job isn’t to out-computer the computer. Your goal isn’t
to be right. Your goal is to discover what is. Think of  it as opti-
mizing for truth.
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3: The Right Way to be Wrong

“It is better to do the right problem the wrong way
than the wrong problem the right way.”

Richard Hamming, The Art of  Doing Science & Engi-
neering

If  you follow all the rules, measure carefully, etc, and it still
doesn’t work, it’s possible that your problem definition isn’t just
falsifiable, it’s false. You might be measuring the wrong thing,
or optimizing the wrong layer of  the stack, or misled about the
root cause. This happened once to Facebook’s HHVM team.
It’s an extreme example that doesn’t come up very often, but
milder versions happen every day.

HHVM is a virtual machine for the PHP programming lan-
guage. Some of  the time it runs bytecode that is dynamically
generated (“just-in-time” aka JIT), but most of  the time is spent
running precompiled C++ code. The implementation wasn’t
completely settled, but there were legitimate reasons for mak-
ing performance a feature.

They started off  with a reasonable problem definition, sim-
ilar to the one we used for WidgetFactoryServer. Just find the
functions that consume the most CPU time and optimize them.
But things didn’t work out the way they expected.

“ HHVM today is about three times faster than it was a year ago.
Then, as now, it spent about 20% of time in the JIT output, and
about 80% in the C++ runtime.
The great mystery for you to ponder, and I would hope for your
book to explain, is that we got three times faster by focusing
our optimization efforts on the code that was executing for
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20% of the time, not 80% of the time. Go back and reread
that.
When you internalize that this sort of thing really happens, in
real programs that you're responsible for, and that we're not
talking about pocket change, but a 3x difference in perfor-
mance, it is scary.
Learning which functions the CPU cycles are being spent on
can actively deceive you about what to optimize. The advice
we give intermediate programmers about "premature optimiza-
tion" and allowing profiling to drive your optimization efforts is,
well, untrue. Or rather, it's a heuristic that helps compensate
for even more dangerously wrong optimization impulses.
-- Keith Adams

So, what happened? How could they get huge wins out of
ignoring the proverbial 80%? Because the minority code had in-
direct influence on the rest. Changes to the JIT code, nomi-
nally responsible for only 20% of  CPU time, caused random,
outsized performance effects throughout the system.

To understand why, remember that a computer really does
only two things: read data and write data. Performance comes
down to how much data the computer must move around, and
where it goes. Throughput and latency always have the last laugh.
This includes CPU instructions, the bits and bytes of  the pro-
gram, which we normally don’t think about.1

The kinds of  computers in use today have four major levels
of  “where data goes”, each one hundreds to thousands of  times
slower than the last as you move farther from the CPU.

1This mental model is less simplistic than it appears. All computers are
ultimately equivalent to a Turing Machine, and what does a Turing Machine
do? It moves symbols around on a tape.
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• Registers & CPU cache: 1 nanosecond

• RAM : 102 nanoseconds

• Local drives: 105 to 107 nanoseconds

• Network: 106 to 109 nanoseconds

Memory controllers try mightily to keep the first level pop-
ulated with the data the CPU needs because every cache miss
means your program spends 100+ cycles in the penalty box.
Even with a 99% hit rate, most of  your CPU time will be spent
waiting on RAM. The same thing happens in the huge latency
gap between RAM and local drives. The kernel’s virtual mem-
ory system tries to swap hot data into RAM to avoid the speed
hit of  talking to disk. Distributed systems try to access data lo-
cally instead of  going over the network, and so on.

HHVM was essentially “hitting swap” on the CPU. Actual
machine code is data too, and has to be on the CPU in order to
execute. Some JIT code would copy over and execute, pushing
other stuff  out of  the CPU caches. Then it would pass control
over to some function in the C++ runtime, which would not be
in the cache, causing everything to halt as the code was pulled
back out of  RAM. Figuring this out was not easy, to say the
least.

“ Cache effects have a reputation for being scarily hard to reason
about, in part because caches of all kinds are a venue for spooky
action-at-distance. The cache is a stateful, shared resource that
connects non-local pieces of your program; code path A may
only be fast today because the cache line it operates on stays
in cache across lots of invocations.
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Making a change in unrelated code that makes it touch two
lines instead of one can suddenly cause A to take a miss every
time it runs. If A is hot, that "innocent" change becomes a
performance catastrophe.
More rarely the opposite happens, which is even more frustrat-
ing, because of how clearly it demonstrates that you don't un-
derstand what determines performance in your program. Early
on in development Jordan DeLong made an individual checkin,
only affecting the JIT, that was a 14% (?!!) performance win
overall.
-- Keith Adams

The surface problem was CPU time. But most of  the time
wasn’t actually going to computation (ie, moving data around
inside the CPU) it was spent fetching data from RAM into the
CPU. Worse was that normal profiling, even advanced stuff  like
VTune and the Linux “perf ” kernel module, weren’t very use-
ful. They will happily tell you what functions suffer the most
cache misses. But they don’t tell you why the data wasn’t there.

The team had to come up with a different problem defini-
tion, which went something like this:

CPU time in HHVM is dominated by CPU cache
misses. If  we somehow log both the function which
suffered a cache miss and the function which re-
placed the data that was missed, we may find that a
small number of  functions cause most of  the evic-
tions. If  we optimize those to use less cache space,
we expect to see a reduction in both cache misses
and CPU time spent across the board.
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That’s a mouthful, but it worked. To prove this theory they
ended up gathering very expensive and detailed logs, for exam-
ple, every datum accessed or CPU instruction executed. They
then fed that through a cache simulation program, and mod-
ified the simulator to record the causal path from evictor to
evictee, so they knew what functions to blame. Sort the list to
find the worst offenders and optimize them. Not easy, but a lot
more straightforward.

Everyone wants a cookbook to follow, and most of  the time
it’s there. But how do new recipes get written? It happens when
everything else fails, and you have to invent new ways to deal
with, or even describe, the problem in front of  you.
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4: Continuous Systems

“Time can’t be measured in days the way money is
measured in pesos and centavos, because all pesos
are equal, while every day, perhaps every hour, is
different.”

Jorge Luis Borges, Juan Muraña

In the age of  the personal computer, software was made the
way toasters (and pesos and centavos) are: lots of  design up
front, stamped out by the million, then sent off  into the world to
fend on their own. It was nearly impossible to get representative
performance data from the field. On the other hand, any copy
was as good as any other. If  you made your copy run faster
it would probably run faster everywhere. That is, when and if
everybody upgraded to the newest version.

The other kind of  software became dominant again 10 or
15 years ago. An internet app is more like a power plant than
a design for a toaster. It’s a unique, complicated artifact woven
into a global network of  other unique, complicated artifacts,
half  of  them human beings.

Being able to give everyone the same version of  your soft-
ware at the same time was the killer feature of  the internet.
It’s why we threw out decades of  software and infrastructure
and rewrote it inside the browser. But this new (old) model has
other important consequences. To understand them, it’s possi-
ble we should rely less on computer science and more on oper-
ations research and process control.

When a major component of  your system is the entire world
and the people in it, you can’t really put a copy on the bench
and test it out. On the other hand, getting live data and iterating
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on what you learn has never been easier. Instead of  “versions”
rolled out every year like cars, you constantly push out smaller
changes and measure their effects.2

Spot checks and benchmarks aren’t enough in this model.
If  something is important enough to worry about, it’s impor-
tant enough to measure all the time. You want a continuous,
layered measurement regime. This makes it easy to run per-
formance experiments in the same way that automated testing
makes it easier to catch errors. It also removes a dependency on
clairvoyance. If  you happen to neglect to measure something
you should have, it’s not a disaster. You can start measuring
it tomorrow. Flexibility in the instrumentation and analysis is
key.

Most interestingly, a networked application follows cycles.
Think for a moment about what it means to run a power plant.
During the wee hours of  the morning draw is low. Then peo-
ple wake up. Alarm clocks and radios turn on (all at the same
minute), then the electric ranges, office buildings, and factories.
Elevators start running. People move from one part of  the city
to another and start using electricity there. School bells ring.
Thermostats are tuned to the weather. If  you were to chart a
week of  power draw, it would look something like this:

2There is also the hybrid model of  mobile applications talking to servers,
building both the power plant and the toaster that plugs into it. But this time
round we’re forcing automatic upgrades on the toasters.
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The peak day is Monday, with everyone going back to work
and school. The peak hour is noon, when power demand is
more than twice the trough hour at 2am. There’s another mini-
peak around 7pm as people come home for dinner. It’s easy to
see that metrics averaged over an entire day or week are almost
meaningless. Like dams, power plants are built for the peak not
the average, and they have to deal gracefully with variation in
demand. The same is true of  network applications.

These diurnal and weekly cycles have important effects on
systems, software, and the measurements you make. Here’s a
graph of  the average per-transaction CPU time and CPU in-
structions for an internet application over a week. As the sys-
tem heats up the CPU time spikes upward, partly due to in-
creased computer utilization. The instructions metric is less
susceptible to this but it still follows the cycles.

The mix of  things people do is cyclical too. They check email
in the morning; at night they play games and videos. Or think
of  a banking application. Users probably check their balance at
all hours. Check deposits should cluster around Fridays, mid-
month, and end of  the month. Bank transfers probably spike a
day or two later, as users pay their rent and bills.

Dealing with these cycles, making sure they don’t interfere
with your analysis, requires some care. When comparing two
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points in time, it’s best to compare the same hour and day of
the week. Running a quick experiment at midnight might not
give you valid data. Running experiments side-by-side through
at least one peak is more informative. This is where using A/B
testing for performance optimizations really helps.

There are some neat tricks that take advantage of  cycles. For
example, the quickest way to reduce capacity demand might be
to turn off expensive features for one hour per week. At very
large scale this is less silly than it sounds. Another might be
to move computation to off-peak time. Do you really need to
generate those emails now, or could they be batched up and
run in the afternoon? Precalculating or precaching data sounds
expensive, but computer time in the trough is nearly free.

Some companies who use cloud providers keep a core set
of  machines on long-term lease, and spin up extra instances as
needed. Renting by the hour is more expensive, and can leave
you vulnerable to a resource crunch, but it’s a decent calculated
risk. If, of  course, you actually do the calculations.
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5: Instrumentation

“You know my method. It is founded upon the ob-
servation of  trifles.”

Sherlock Holmes, The Bascombe Valley Mystery

How do you profile? What do you measure? A problem def-
inition hints at the bottlenecked resource you want to conserve,
but instrumentation is hard to get right. There is lots of  room to
fool yourself. In this chapter we will focus on the recording of
performance data. Where it goes and what you do with it will
be discussed later on.

Let’s begin with some jargon. A measurement is a number
obtained during some kind of  profiling event. It could be the
number of  CPU cycles spent, or time spent waiting for data
fetching, the number of  bytes sent or received, etc. It is almost
always an integer, because we’re dealing with discrete systems.
If  you come across a decimal it’s because of  the units (34.19
msec = 34,190 µsec), or because it’s not a single measurement
but an average, like the CPU temperature or requests per sec-
ond.

The metadata are attributes of  the system or event that might
influence the measurements. They include environmental facts,
for example, the timestamp, the machine name, compiler ver-
sion, the kind of  transaction being done. They also include
things learned during the event which are not numerical mea-
surements, like error codes. The metadata is what you use to
separate a goopy mass of  numbers into coherent groups.3

3In machine learning and pattern recognition circles these are called fea-
tures. In dimensional analysis, they are called dimensions. In the physical sci-
ences you might hear them called factors or nominal–, categorical–, or attribute
variables. All more or less the same thing.
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A sample is a collection of  measurements and metadata, an
observation of  a single event. It is a statement about that event,
usually a transaction performed by the system. Technically the
term “sample” can also refer to a set of  observations taken from
a larger set, eg “a 5% sample of  the population”. To avoid con-
fusion, in this book “a sample” will always mean a single ob-
servation.

A metric is a statement about a set of  samples. It’s typically
an aggregate number derived from some measurements, and
a description of  the subset of  samples they come from. “The
median walltime of  WidgetFactoryServer, between 10am and
11am on 18 April 2013, in the West-coast datacenter, was 212
msec.” Metrics can also be simple counts and proportions, eg
“1.22% of  hits returned an error code.”

Computers are like onions
A good measurement regime is built up in layers. Avoid the
temptation to measure the first thing that comes into your head,
because it won’t be random. It’ll be the thing you feel you un-
derstand best, but our feelings are probably wrong. We opti-
mize what we measure. Some things are easier to measure than
others, so those tend to be optimized too much.4

Forget for a moment that you built the thing and start from
first principles. Pretend you are examining an alien artifact that
just fell out of  the sky. You want to discover how it performs.
Not how it works, how it performs. What does it consume?
What does it output? Where does that happen? A good place
to start is with basic “temperature and pressure” logs of  the
system. Then you add more detailed logging to help zero in

4On the other hand this is supposed to be a short book, so we will ignore
the client side of  performance work and focus on the server side.
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on the hot spots. It’s a process of  recursively subdividing mea-
surements to find concentrations of  precious resources being
consumed.

Your instrumentation should cover the important use cases
in production. Make all the measurements you want in the lab,
but nothing substitutes continuous real-world data. Think about
it this way: optimizing based on measurements you take in a lab
environment is itself  a falsifiable theory, ie, that lab conditions
are sufficiently similar to production. The only way to test that
theory is to collect measurements in production too.

Let’s say it’s some kind of  server application. There’s a web
server tier, a datastore, and maybe a caching layer. The web
layer is almost always where the action is; if  it’s not the major
bottleneck it still has lots of  leverage. A baseline performance
log of  every hit to the web server doesn’t have to be fancy, just
counters of  the resources consumed during each transaction.
Here’s an example, modeled on a real-world system:

Metadata

timestamp script_path

server_name status_code

datacenter ab_tests

build_number user_id

All of  these should be cheaply available to the application
layer. A common mistake is to collect too little metadata. Any
input that affects the logic that executes, or might help you sep-
arate one pile of  samples from another, is worth writing down.
Logging the status code lets you count errors and keep inex-
pensive HTTP redirects from skewing the averages. If  you log
whatever A/B test buckets were in effect for a hit, you can use
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your A/B framework to experiment with different optimiza-
tions. If  you log the application’s build number you can connect
changes in performance to changes in features.

The script_path is unfortunately a muddled concept. These
days there is little connection between URI requested by the
client and the “script” that handles it. I’ve yet to come up with
a good name for this field, but it should contain a unique identi-
fier for the major bit of  code that ran during an event. If  you are
logging a hit to the home page, then “/” or “home” will do. If
it was a call to an API you publish, then script_path should be
the API method. If  you have some kind of  Controller architec-
ture, use the name of  the controller, and so on. The cardinality
of  this field should be low; a few thousand at most. If  some
URI parameter significantly changes the behavior, include it,
but not all parameters.

Measurements

walltime db_count cache_count

cpu_time db_bytes_in cache_bytes_in

memory_used db_walltime cache_walltime

bytes_out

This is a decent set of  measurements. They describe the ma-
jor “consumables” of  a computer (wall-clock time, CPU time,
memory, network). They also split walltime into rough chunks,
ie time spent waiting for the database and cache. They count
how many data-fetching operations are done, and the ratio be-
tween the bytes fetched and sent to the client. Let’s give this
measurement system a name: Detailed Event & Resource Plot-
ting, or DERP for short.

28



This minimal regime, applied to a system that’s never had
one before, would probably reveal a half-dozen things you can
fix before lunch. And they will all be lurking in some place
surprising.

Adding more layers

The next layer of  logging is determined by what DERP tells you
about your system. If  it turns out that most of  the time goes to
CPU, then you can use a CPU profiler to find the expensive
functions. If  instead the system spends a lot of  time waiting on
the database, then you want to build a query logger.

Say that the time is going to database queries. The db_count
is often high, as is db_walltime. Naturally you want to know
which queries are slow. The expedient answer is to instrument
the database. Most of  them have a “slow query” log of  some
kind or another.

That approach has problems. It may be a lot of  little queries
causing the slowdown, not a few big ones. It can be hard to
connect a query logged on the database to the code on the web
tier that generated it. The same query might be triggered from
multiple places. You’ll end up stuffing more and more metadata
into query comments then parsing them out later. And then
there is the high cardinality of  the queries themselves. We can
do better.

In addition to counting database queries and the total time
spent on the client (web server) side, log individual queries there
too. The cardinality can be reduced by logging a normalized
pattern. For example, this is the raw text the database might
see:
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SELECT photo_id, title, caption, ...

FROM photos

WHERE timestamp > 1365880855

AND user_id = 4

AND title LIKE ’%kayak%’

AND album_id IN (1234, 4567, 8901, 2345, ...)

AND deleted = 0

ORDER BY timestamp

LIMIT 50 OFFSET 51

We can replace most of  the literal strings and numbers with
placeholders, since there’s probably little performance differ-
ence between looking up user 4 and user 10, or “kayak” instead
of  “sunset”. The explosion of  IN clause values can be reduced
to a count. Instead of  a series of  placeholders like ([N], [N],

[N], [N], [N]) you log the nearest power-of-two, [N8]. You
can take this quite far to reduce the number of  unique queries:
collapsing and sorting repeated clauses, unwinding subqueries,
etc. In the extreme case you end up with a little language parser.
It’s fun, if  you enjoy that sort of  thing.

SELECT photo_id, title, caption, ...

FROM photos

WHERE timestamp > [N]

AND user_id = [N]

AND title LIKE [S]

AND album_id IN [N8]

AND deleted = [N]

ORDER BY timestamp

LIMIT 50 OFFSET 51

A sample in the DERP-DB log is structured very similarly to
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a DERP sample, except that it’s a statement about an individual
query, not the web hit as a whole:

DERP-DB

Metadata Measurements

timestamp db_walltime

server_name db_bytes_in

datacenter db_query_bytes

build_number db_rows_examined

script_path db_rows_returned

status_code

ab_tests

user_id

db_query_pattern

db_server_name

db_error_code

Why have two logs that substantially overlap? Why not have
a “request_id”, log the common metadata only once, and join
it up when you need it? Or put everything together in one log?
Separate logging has a lot of  nice properties, admittedly at the
expense of  disk space. You can easily imagine these logs as
flat, denormalized database tables. Very fast and easy to query,
which is important for exploration and charting. You also might
want to have different sample rates or data retention for DERP-
DB versus DERP.

Cache on the Barrelhead
Another layer of  logging that seems to make sense here is on
the caching system. Presumably it’s there to store the results of
expensive computations on the database or web tier for later
reuse. How well does it do that? Its effectiveness depends on
two metrics. The “hit rate” is how often the precomputed data
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is there when it’s asked for. The “efficiency” describes how of-
ten a piece of  data in the cache actually gets used. There are also
ancillary things like the ratio between key and value length.

Just as with DERP-DB, a DERP-CACHE sample should
describe a single data fetch. The important metadata are what
operation was done (a GET, DELETE, WRITE, etc) the nor-
malized key, the server being queried, and whether the fetch
was successful. On the assumption that most database reads
are cache misses, it also makes sense to add another field to
DERP-DB, recording the normalized key which missed.

DERP-CACHE

Metadata Measurements

timestamp cache_walltime

server_name cache_bytes_in

datacenter cache_key_bytes

build_number

script_path

status_code

ab_tests

user_id

cache_operation

cache_key_pattern

cache_server_name

cache_hit

So now you know which query patterns take the most time,
what script_paths they come from, and the efficiency of  your
caching system. Optimizing now comes down to whether the
system is doing unnecessary queries, or whether their results
can be cached, or perhaps the query itself  (or the indexes, or
the database) needs tuning. Only the data can tell you where to
look next.
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6: Storing Your Data

“Time dissipates to shining ether the solid angular-
ity of  facts.”

Ralph Waldo Emerson, Essays, 1841

Our friends in the physical sciences have it worse. A ther-
mometer can’t actually measure the temperature at a given point
in time. Heat takes time to transfer so a thermometer can only
give the average temperature over some period. The more sen-
sitive the measurements desired, the more the equipment costs.
And there is always a lag.

You and I can make as many discrete (and discreet) mea-
surements as we want. We can even change what measurements
are done on the fly based on complex logic. And, of  course,
we know how to handle large amounts of  data. So why do we
throw the stuff  away? Look at the documentation for a popular
measurement system like RRDtool:

“ You may log data at a 1 minute interval, but you might also be
interested to know the development of the data over the last
year. You could do this by simply storing the data in 1 minute
intervals for the whole year. While this would take considerable
disk space it would also take a lot of time to analyze the data
when you wanted to create a graph covering the whole year.
RRDtool offers a solution to this problem through its data con-
solidation feature.
Using different consolidation functions (CF) allows you to store
exactly the type of information that actually interests you: the
maximum one minute traffic on the LAN, the minimum temper-
ature of your wine cellar, the total minutes of down time, etc.
-- oss.oetiker.ch/rrdtool/doc/rrdtool.en.html
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This approach is dead wrong, and not because of  its breezy
claims about performance.Why do we force ourselves to guess
every interesting metric in advance? To save disk space? Com-
puting aggregates then throwing away your raw data is prema-
ture optimization.

In exchange for that saved space, you have created a hidden
dependency on clairvoyance. That only works if  all you will
ever need to know is the “maximum one minute traffic”. If  later
on you want to know what the average traffic was, or the 95th
percentile, or grouped by protocol, or excluding some hosts, or
anything else, you can’t.

Making sense of  a pile of  data is a multidimensional search
problem. We’re programmers. We know how to handle search
problems. The key is being able to freely jump around those
dimensions. It’s not possible to predict ahead of  time the ag-
gregate metrics, the search paths, you’ll want to use later on.
Storing all the raw data can be expensive, but on the other hand
the combinatorial explosion of  all possible metrics that can be
derived from it is much larger. On the third hand, the usefulness
of  raw data drops off  sharply as it ages.

There is a way to redefine the problem. What’s happening
is a clash between two use-cases. New data needs to be in a
“high-energy” state, very fluid and explorable. Old data can be
lower-energy, pre-aggregated, and needs to be stable over long
periods of  time.

So, store raw performance data in a very fast database, but
only for the last few weeks or months. You can explore that raw
data to discover the metrics you care about. Then you render it
down to those road-tested metrics and shove them into RRD
or whatever else you want for long-term storage. A buffer of
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recent raw data to help you diagnose novel problems, and stable
historical records so you can track how well you’re doing.

This brings us next to the storage engine of  a system de-
veloped at Facebook called Scuba.5 When Lior Abraham and
David Reiss first pitched the idea, I thought it was nonsense.
Store raw samples in RAM ? No indexes? Every query is a full
scan? Ridiculous. We were having a hard enough time keeping
our performance data small enough to fit on disk. What were
they thinking?

They were thinking about the future. The inflexibility of  the
tools we had at the time, and especially their pernicious depen-
dency on clairvoyance, was getting in the way of  us doing our
job. We had only a few dimensions pre-aggregated and if  the
problem of  the day lay somewhere else, we were stuck. Adding
new dimensions was a pain in the neck, and didn’t help with
the problem you were trying to fix right now. The raw data was
either gone or very slow to query.

Storing raw samples, all the metadata and measurements, in
a flat table in RAM, makes every possible query equally cheap.
It shortens the feedback loop from idea to results down to sec-
onds, and allows truly interactive exploration. The short shelf-
life of  raw data becomes an advantage, because it limits the
amount of  expensive storage you need.

Here is the beginning of  the README file for a measure-
ment system developed by Square, Inc.

“ Cube is a system for collecting timestamped events and deriv-
ing metrics. By collecting events rather than metrics, Cube lets
you compute aggregate statistics post hoc.

5fb.me/scuba www.facebook.com/publications/148418812023978
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-- github.com/square/cube

How to build one

The shortest way to describe this kind of  storage system is as
a search engine that can perform statistical functions. It needs
to efficiently store large numbers of  “documents” with flexible
schemas, probably distributed over many servers. It must be
able to retrieve all matching documents quickly, then reduce
the measurements down to counts, sums, averages, standard
deviations, percentiles, and so on. Grouping along the time
dimension (eg, average walltime for the last few hours in 5-
minute buckets) is also a must.

The systems of  this kind I’ve seen tend to be hybrids: actual
search engines taught to do statistics, statistical engines scaled
up, or document stores with a layer of  aggregation on top. I
don’t think a name for it has been generally agreed on, but it
will probably be something like “analysis engine”.

I hesitate to recommend building your own for serious pro-
duction work; there are plenty of  databases and charting li-
braries in the world already. But understanding their imple-
mentation by building a toy version will help illustrate the ben-
efits of  a system designed around raw samples.

The hardest part is scaling over multiple machines, espe-
cially the statistical functions. Leaving that aside you can hack
a prototype without too much fuss using a standard relational
database. The statistical functions are often lacking but can be
faked with sufficiently clever SQL and post-processing. We’ll
also disregard the flexible schema requirement because we’re
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going to avoid most of  the normal headaches of  managing re-
lational database schemas. There will be only one index, on
the time dimension; we will rarely delete columns and never
do joins.

sqlite> .tables

derp derp_cache derp_db

sqlite> .schema derp

CREATE TABLE derp (

timestamp int,

script_path string,

server_name string,

datacenter string,

ab_tests string,

walltime int,

cpu_time int,

...

Each of  the three logs in our example measurement regime
can be represented as a flat, denormalized database table. We
can query the tables to see walltime metrics for various kinds
of  transactions served by our system over, say, the last hour.
If  the definition of  “metric” in the previous chapter on instru-
mentation sounded a lot like a database query, this is why.

sqlite> select script_path, round(avg(walltime)/1000)

from derp where timestamp >= 1366800000

and timestamp < 1366800000+3600

group by script_path;

/account | 1532.0

/health | 2.0

/home | 1554.0

37



/pay | 653.0

/share | 229.0

/signup | 109.0

/watch | 459.0

When a user is logged in, the application does a lot more
work and fetching of  data, for example their preferences and
viewing history. The state of  the user is then a significant influ-
ence on the resources consumed. Averaging in all the light hits
from anonymous users can mask problems.

sqlite> select user_state, sum(sample_rate),

round(avg(walltime)/1000), round(avg(db_count))

from derp where timestamp ...

and script_path = ’/watch’

group by user_state;

logged-in | 2540 | 1502.0 | 2.3

anon | 11870 | 619.0 | 0.9

Including lots of  environmental data in the DERP log lets
you look at the performance of  larger components of  the sys-
tem. Are the webservers equally loaded? How about the various
datacenters they live in? If  the dataset is sampled, the sum of
the sample_rate field gives you a estimate of  the total number
of  transactions performed.

sqlite> select server_name, sum(sample_rate),

round(avg(walltime)/1000)

from derp where timestamp ...

group by server_name;
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web1 | 19520 | 1016.0

web2 | 19820 | 1094.0

...

sqlite> select datacenter, sum(sample_rate),

round(avg(walltime)/1000)

from derp where timestamp ...

group by datacenter;

east | 342250 | 1054.0

west | 330310 | 1049.0

By grouping the time dimension into 300-second buckets,
you can see that the /health hit, which is used internally to
make sure that a web server is still functioning and able to re-
spond, has pretty stable performance, as expected.

sqlite> select

group_concat(round(avg(walltime)/1000, 1), ’, ’)

from derp where timestamp ...

and script_path = ’/health’

group by timestamp/(60*5);

1.5, 2.1, 2.2, 1.3, 1.3, 1.3, 1.4, 1.1, ...

Isn’t that nice? All of  these metrics and thousands more can
be generated from the same raw table. The simplicity of  the
queries helps too. You could easily imagine these numbers plot-
ted on a time series chart. Later on that’s just what we’ll do.
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A brief  aside about data modeling
The long-running doctrinal disagreement between relational
entity modeling (third normal form, OLTP, etc) and dimen-
sional modeling (star schemas, data warehousing, OLAP, and
so forth) is largely about the number of  table joins needed to ac-
complish the task of  analysis. In other words, it’s an argument
over performance.

Well, we know what to do about arguments over perfor-
mance. “Define the problem and measure” applies just as much
to the systems you build for measurement. The flat table struc-
ture described above is at the extreme of  trading space for time:
there are zero joins because all the metadata are attached to the
sample. It’s a starting point, but one that can take you a long,
long, long way.

As your measurement system scales up you will likely not
want a totally flat design that attaches obscure metadata like the
the server’s chipset, model number, rack id, etc to every sample.
Instead you might add a small lookup table to the database and
join on it, or implement some kind of  dictionary compression.
The point is that complicating your schema is an optimization
to be done when the need arises, not because of  data model
orthodoxy. Don’t overthink it.
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7: Check Your Yardsticks

“Prudent physicists –those who want to avoid false
leads and dead ends– operate according to a long-
standing principle: Never start a lengthy calcula-
tion until you know the range of  values within which
the answer is likey to fall (and, equally important,
the range within the answer is unlikely to fall).”

Hans Christian van Baeyer, The Fermi Solution

The people in the hardware store must have thought my fa-
ther was crazy. Before buying a yardstick, he compared each
one to a yardstick he brought with him. It sounds less crazy
when you learn he’s found differences of  over 1

4 inch per yard,
something like 1%. That’s a big deal when you are building. It’s
even worse when you aren’t aware there’s a problem at all.

The yardstick’s reputation is so strong that we use it as a
metaphor for other standards, eg the “yardstick of  civilization”.
The entire point of  their existence is that they should all be the
same size. How could anyone manage to get that wrong? Well,
manufacturing tolerances drift. Yardsticks are made from other
yardsticks, which are made from others, and so on back in time.
Errors propagate. Measurement is trickier than it appears.

The root cause is that no one bothered to check. Measure-
ment software is just as likely to have bugs as anything else we
write, and we should take more care than usual. A bug in user-
facing code results in a bad experience. A bug in measurement
code results in bad decisions.

There are simple checks you can do: negative numbers are
almost always wrong. One kind of  mistake, which would be
funnier if  it didn’t happen so often, is to blindly record a CPU

41



or walltime measurement of  1.3 billion seconds.6 Other checks
are possible between measurements. CPU time should never
be greater than walltime in a single-threaded program, and the
sum of  component times should never be greater than the over-
all measure.

A harder bug to catch is missing points of  instrumentation.
This is where a well-factored codebase, with only a few call-
sites to maintain, really helps. You can also use the layers of
your measurement regime to cross-check each other. Let’s say
DERP logs 1:1 and DERP-DB at 1:100. The weight-adjusted
sums of  DERP’s db_count field and DERP-DB samples should
be in close agreement. Ditto for errors and the weighted sums
of  db_wall_time or db_bytes_in. If  the numbers don’t add up
you may have missed something.

Even better is to log something in two different ways, to
bring your own yardstick to the hardware store. To a program-
mer, having two systems that measure the same thing is du-
plicated work. To an experimentalist that’s just independent
confirmation. The more ways you can show something to be
true the more likely it is true. The second log doesn’t have to
be fancy. Your database probably has enough statistics built in
that you can monitor periodically and compare with your logs.

Or it can be very fancy indeed. For a long time, Jordan
Alperin hadn’t been satisfied with the error logs that were com-
ing in from certain kinds of  client software. A large portion had
no information to go on, no line numbers or even error mes-
sages. Some had messages apparently localized to the user’s
language: “x is niet gedefinieerd”.

6Or perhaps 1.4 billion, depending on when you read this. Duration is
measured by recording a Unix timestamp before and after some event, and
subtracting start from end. If  you’re not careful, you can get 0 in either of
those values...
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Jordan decided to look at where the rubber met the road,
a built-in event called window.onerror. It’s supposed to pass
in three arguments: an error message, the URL of  the code,
and a line number. The internet being what it is, he suspected
that some people were not following the spec. So he rewrote
the error handler to accept any number of  arguments and log
them blindly. It turns out that some clients pass in a single er-
ror object, others only two arguments, still others four. And, of
course, he found flaws in the error-handling code which gener-
ated more errors to muddy the waters further.

Running both logging schemes side-by-side established a new
lower bound on the number of  errors. Only then could Jordan
start the task of  figuring out what those errors were, including
a whole class previously unknown.

On top of  the exciting opportunities for writing bugs your-
self, the measurements you rely on may not be what they seem.
Take CPU time. The idea is simple enough: on mutitasking
computers a program can be scheduled in and out multiple
times per second, even moved from one core to another. CPU
time is the number of  milliseconds during which your program
was executing instructions on a chip.

But are all milliseconds equivalent? CPUs aren’t simple clock-
work devices anymore, if  they ever were. As we saw with HHVM,
some (most!) of  the time can be spent waiting for data in RAM,
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not actually doing work. It’s not just your program’s cache-
friendliness at play, either. A server at 90% utilization behaves
very differently from an idle machine with plenty of  memory
bandwidth. And what happens when you have several gener-
ations of  servers in your fleet, some 2GHz and some 3GHz?
You can’t average their measurements together if  you want a
long-term metric that makes sense. And just in case you were
thinking of  scaling CPU time by clock speed, modern chips can
adjust their clock speeds based on all kinds of  environmental data.

One way out of  that particular hole is to take a second mea-
sure of  computation alongside CPU time: retired CPU instruc-
tions. In general, instruction counts are less dependent on the
factors that influence time. This measurement is harder to get;
you have to rummage around inside the kernel and special chip
vendor features. And not all instructions are equivalent. But for
CPU optimization at the application level, it can be worth the
trouble to collect.
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8: Ontology

“One of  the miseries of  life is that everybody names
things a little bit wrong.”

Richard Feynman, Computers From The Inside Out

If  you have the luxury of  building a measurement regime
from scratch, make sure you get the names and units right.

A long time ago, back at the beginning of  the world, I was
helping to build a website to sell computer products. The data
was dumped nightly from a COBOL-based mainframe database.
The prices made no sense: a cheap mouse listed at 9990. “Oh,
that,” said the crusty senior engineer. “We store all money data
in mills. One-thousandth of  a dollar. That way we avoid floating-
point errors and decimal errors when we do discounts and com-
missions. It’s a real thing; look it up.”

He was right. The mill is a legal unit of  currency. Even if
it wasn’t this would be a good idea. As long as everyone uses
the same units, and those units have greater precision than you
need, whole classes of  errors can be avoided. Sometimes the
old folks know what they are talking about.

A measurement regime for performance deals in a few ma-
jor currencies: time, instructions, and bytes. The handiest unit
of  time is probably the millisecond (msec), but sometimes you
need more precision. It’s not as though storing a measurement
as 1 billion microseconds takes more space than 1 million mil-
liseconds. They are all fixed-length integers in the end.

You do have to think about aggregation and overflow. For-
tunately an unsigned 64-bit integer can represent over half  a
million years’ worth of  time in microseconds (µsec). I wouldn’t
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want to go on record as saying 64 bits is enough for anyone,
but it should serve for nearly any system you contemplate.

Designing your units to the data types, eg reducing preci-
sion to make all expected values fit into a 32-bit integer, is a
recipe for regret. Define the precision you want, be generous
with yourself, implement it, and then make it more efficient.
You can fit 71 minutes’ worth of  microseconds into an un-
signed int32, so it’s possible you can get away with storing raw
measurements as uint32 and casting to uint64 during aggrega-
tion. But keep that optimization in your back pocket for when
you really need the space.

Counting raw CPU instructions is probably overkill. One
microsecond is enough time to execute a few thousand instruc-
tions. We don’t want to overflow, and given that a microsecond
is precise enough for most purposes, our base unit could be the
kiloinstruction, or kinst.

Bytes should be stored as bytes. The kilobyte is too coarse
for many measurements, and no one remembers to divide or
multiply them correctly anyway (1 KB = 1,024 B). There is
a slight danger of  overflow, however, and some difference in
opinion about the proper unit. Network traffic is traditionally
measured in bits, 1/8th of  a byte. 125 gigabytes per second,
measured in bits, would overflow a uint64 counter in seven
months. Five years ago a terabit of  traffic was nearly unthink-
able. Today it’s within the reach of  many systems. Five years
from now you’ll doubtless get a terabit for free with your break-
fast cereal.

Remember that we’re talking about storage, not display. It
can be tiresome to deal with large numbers of  significant digits.
The user interfaces on top of  the data should help humans cope
by rounding values to megabytes and CPU-years, or otherwise
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indicating orders of  magnitude. When working with large raw
numbers I configure my terminal to display millions & billions
& trillions in different colors.

Attack of  the Jargon
Naming things has been half-jokingly called the second-hardest
problem in computer science. Anyone can name the things they
build anything they want, and they do. That’s the problem. The
computer doesn’t care about names. They’re for the benefit of
humans so there are no technical arguments to fall back on.
Excess jargon is the sawdust of  new technology, and the mental
friction it imposes is scandalous. Whoever figures out how to
sweep it up does a service to mankind.

Take the word we’ve been using for intervals of  real time,
“walltime”. Perhaps it’s more properly called “duration”. Time
spent on the CPU could be called “cpu_duration”; time spent
waiting for the database “db_duration” and so on. And why
not be explicit about the units, eg “duration_cpu_usec”? If  you
have a strong preference either way, I humbly suggest that it’s a
matter of  taste and not universal truth. Walltime sounds more
natural to me because that was the jargon I was first exposed
to. But who actually has clocks on their walls any more? The
term is as dated as “dialing” a phone number.

For that matter, take instructions. Now that we’ve decided
to round to the nearest thousand, is the name “instructions”
misleading? Is “kilo_instructions” too cumbersome to type? Is
“kinst” too obscure to remember?

This all might sound mincing and pedantic, but a) you have
to pick something and b) you’ll have to deal with your choices
for a long time. So will the people who come after you. You
can’t clean up the world but you can mind your own patch.
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Even an ugly scheme, if  it’s consistently ugly, is better than
having to remember that walltime here is duration over there
and response_time_usec somewhere else. Whatever ontology
you build, write it down somewhere it will be noticed. Explain
what the words mean, the units they describe, and be firm about
consistency.
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9: Visualization

“A four-year-old child could understand this report!
(Run out and find me a four-year-old child. I can’t
make head or tail out of  it.)”

Groucho Marx, Duck Soup

As useful as it is to keep all those correctly-named, double-
checked, raw performance numbers, no one actually wants to
look at them. To understand the data, not just user data but any
data, we need to summarize measurements over a large range
of  possible values.

You keep using that word
So far we’ve been using mean average in all of  our metrics. Ev-
eryone understands how avg() is calculated: take the sum of  the
numbers and a count of  how many numbers there are, then di-
vide one into the other. But averages lie to us. The moment Bill
Gates steps onto a city bus, on average everyone is a billionaire.

Let’s look at a simple metric, walltime per hit. The aver-
age walltime of  hits in our DERP dataset, minus the cheap
healthchecks, is 439 milliseconds. Does that sound slow? Is it
slow? What part is slow? Hard to know.

sqlite> select round(avg(walltime)/1000), count(1)

from derp where script_path != ’/health’;

439.0 | 3722

Let’s split the range of  values into ten bins of  100 msec each,
and measure the percent of  samples that fall in each one.
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select round(walltime/1000/100) * (100) as bin,

round(count(1)/3722.0, 2) as percent

from derp

where walltime/1000 < 1000

and script_path != ’/health’

group by bin;

0.0 | 0.41

100.0 | 0.17

200.0 | 0.1

300.0 | 0.06

400.0 | 0.04

500.0 | 0.02

600.0 | 0.02

700.0 | 0.02

800.0 | 0.02

900.0 | 0.02

This very rough histogram tells us that 40% of  samples have
a walltime between 0 and 100 msec. It’s hard to see from this
list of  numbers, but the sum of  all ten bins is only about 88%,
so there are plenty outside our upper limit of  1 second.

This query doesn’t give you percentiles, which is something
slightly different. The median, aka 50th percentile or p50, is
the number of  milliseconds that is more than half  of  the sam-
ples and less than the other half. Since the first two of  ten bins
contain 58% of  the samples, we can guess that the median value
is somewhere near the beginning of  the second bin, ie between
100 and 200 msec.

Knowing the median (and any other percentile) more accu-
rately is easy. Just divide the histogram into many more bins,
say in increments of  15 msec. Sum from the top until the total
of  bin percents gets close to 0.5 (or 0.25 or 0.95, etc). It’s still
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an approximation, but the margin is smaller. In this case, the
median is somewhere between 120 and 135 msec, and the p75
is close to 405 msec.

select round(walltime/1000/15) * (15) as bin,

round(count(1)/3722.0, 2) as percent

from derp

where walltime/1000 < 1000

and script_path != ’/health’

group by bin;

0.0 | 0.0

15.0 | 0.02

30.0 | 0.1

45.0 | 0.11

60.0 | 0.08

75.0 | 0.06

90.0 | 0.05

105.0 | 0.03

120.0 | 0.03

135.0 | 0.03

150.0 | 0.02

165.0 | 0.02

...

So, hiding behind that mean old average number is a much
more complex story. Fully 75% of  samples have a response time
lower than the average. Most of  them are grouped around 40
to 60 msec, ten times faster than you would be led to believe by
the headline number. Even in plain SQL there are silly tricks to
make this distribution more clear.
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I warned you it was silly. With sufficient stubbornness it is
possible to wring insight out of  nothing but a SQL prompt, but
in this day and age no one should have to.

Minimal pictures, maximal flexibility
This might appear counterintuitive, but the fewer types of  vi-
sualizations you add to your tool, the better off  you’ll be. Re-
member that the goal is not pretty pictures, it’s insight. A visu-
alization tool should first focus on the fluidity of  exploration,
which in turn depends on the composability of  its features. A
dataset with ten metadata columns can be thought of  as a ten-
dimensional space, with one or more measurements residing
at the points. Helping the user navigate and collapse that space
is the primary task.

The main activities are to describe trends, show the distri-
bution of  a set of  samples, to compare sets of  samples, and to
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find correlations between dimensions. As a general principle,
if  you ever catch yourself  doing mental arithmetic, or pointing
to two spots on a graph, or (worse) two separate graphs, that
means your tool is missing a feature.

Start with a raw table view. All metadata and measurement
columns are visible, and each row is a raw sample. The first
feature should be the ability to hide the columns that are unim-
portant to the question being asked. The second feature is to
group rows together by the values in the metadata columns.
The third is to compute aggregate metrics (counts, averages,
percentiles) over the grouped measurements. The fourth is to
overlay two tables on top of  each other and calculate the differ-
ences in each cell. This allows you to compare the performance
of  two datacenters, or versions of  the software, or anything else.

So far what we have isn’t much more powerful than a spread-
sheet (though spreadsheets are more powerful than they look).
One special dimension of  the data is time. Controlling the inter-
val of  time being queried should require a minimum of  clicks,
keystrokes, or thought. Humans are pretty bad at understand-
ing raw time values but we are pretty good at spatial reasoning.
I’ve found it’s easiest to deal with relative times like “one hour
ago” and “last week”. Requiring too much precision from the
user serves little purpose.

For a given interval of  time, say one hour ago to now, cal-
culate the median cpu_time in one-minute buckets. You could
display this data as a series of  rows, one for each time bucket,
but that would be painful for the user to grok. It’s better to add a
second type of  visualization, the time series graph. There have
already been many examples of  that graph in this book because
we’re often concerned with showing changes over time.

When adding a new type of  visualization, it pays to add the
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same composable features as the rest: hiding columns, group-
ing samples, calculating metrics, and showing differences. For
the time series graph, that last feature can be implemented by
drawing a second dotted line, like so:

The third important visualization is the histogram or den-
sity graph. Its purpose is to show the full distribution of  values
in a set of  samples, just like the silly SQL graph above. Com-
paring histograms is tricky to get right, but it’s worth the time
to experiment to get to something you like.

The fourth great chart is the scatter plot. It’s rare for meta-
data and measurements to be completely independent, and the
scatter is a quick way to see whether there is a relationship be-
tween them. Here’s a chart showing the relationship between
CPU utilization and request throughput over a large number
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of  servers. The relationship is nearly linear, as you’d expect
from a system that’s CPU-bound. The angle of  the different
“streaks” are interesting, probably evidence of  different chip
speeds, memory arrangements, or workloads.

Chains of  reasoning
Another general principle is to design for chains of  reasoning, not
just individual views of  the data. In the course of  finding the
answer to a question, it’s very likely the user will need to run
multiple queries, perhaps narrowing down a previous query, or
rotating along another dimension or metric, or even backtrack-
ing several steps.

The system should be built around the idea of  handling the
combinatorial explosion of  possible metrics and views on the
data. Only a few of  those views are important, and the raw
data ages out relatively quickly. So every query that a human
actually looks at is probably special and should be saved: not
just the description of  the query, but the actual data. If  you do
it right, this would cost at most a few tens of  kilobytes per. Give
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each saved view a short, unique URL they can share around.
Collections of  those views are a record of  a chain of  reasoning.

That’s a fancy way of  saying “permalink”, and it’s nothing
novel. The ideas in this chapter are only examples. To get the
most out of  your hard-won data, apply modern user-experience
design to the task at hand. If  the effort is worth it for your users’
experience, it’s worth it for yours.
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10: Monitoring & Diagnosis

“Work in the real world involves detecting when
things have gone awry; discriminating between data
and artefact; discarding red herrings; knowing when
to abandon approaches that will ultimately become
unsuccessful; and reacting smoothly to escalating
consequences.”

Richard Cook, Gaps in the Continuity of  Care and Progress
on Patient Safety

The point of  measuring all this stuff  in production is to know
what’s going on, and to be able to find the causes of  meaning-
ful changes in the metrics. That sounds a lot like operations,
doesn’t it? With networked applications the line between oper-
ations and performance gets blurry.

Monitoring
Whether you call them greenboards, or gauges, or blinkenlights,
or heads-up displays, a dashboard is the main fusebox of  your
system. The metrics on the board should reflect your under-
standing of  how the system behaves and misbehaves.

The dashboard is a really good place to apply that trick of
stating theories in terms of  what they predict won’t happen. Fin-
ish the following sentence by filling in the blanks:

While the system is operating normally, the
graph should never .

There will be several good answers, and they will tend to
be fundamental things like network traffic, CPU utilization,
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and transaction volume. Those answers, expressed as graphs
on your dashboard, should function like electrical fuses: sim-
ple, robust, and not prone to false positives or negatives. A fuse
popping conveys only one bit of  information, but it’s an impor-
tant bit, and almost always a cause for action.

It’s a common mistake to overload your dashboard with too
much information. The fanciest hospital monitor can describe
something as complex and important as a living being with less
than ten metrics. While the human is operating normally, the heart
rate graph should never change drastically, go below 60, or above 100.
You can do the same with a computer system. A dashboard is
for monitoring, not diagnosis. It’s only job is to tell you that
something is wrong, and give a rough clue about where to look
next.

That’s not to say you can’t have lots of  graphs. It’s fine to
have lots of  graphs, say memory pressure and CPU, one for ev-
ery server. What you don’t want is too many metrics, too many
kinds of  graphs, confusing the separate duties of  monitoring and
diagnosis.

Diagnosis
One day you wake up to a popped fuse. The response times on
the web tier have gone up by 10%. First you want to find where
the increase is concentrated. The assumption is that all things
are equal except for one anomaly. It’s a decent heuristic as long
as you keep in mind that it is a heuristic, and be prepared to
change your mind. The more complex and volatile a system,
the more often a single surface problem has multiple causes.

Rich metadata and a flexible system for visualization and
analysis are your friends. Go back to see when the increase
happened. Was is a sharp jump, or something gradual? Note
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that interval of  time with a little bit on either side, so you can
refer to it later. Then compare a large set of  samples from be-
fore and after to see the magnitude of  the change. Every hour is
different, but per-hit or per-user metrics should be good enough
for now.

Comparing those two intervals of  time, subdivide the set of
samples by some dimensions, say by datacenter, or product or
script_path. If  you’re lucky, the increase will not be across the
board but mostly in one of  those buckets. A latency bump lo-
calized to a datacenter would suggest a systems problem like an
overloaded database machine. Product or script_path changes
suggest some code or configuration change. Check the log of
changes (you have a log of  changes, right?) and see whether any
of  them correspond in time to the performance regression.

If  you’re not lucky and the rise happens everywhere, that
means you’re probably looking at the wrong layer of  the stack.
Till now you’ve been using gross walltime. Which component
of  walltime is acting up? In the example system we’ve been us-
ing throughout this book, there are three components: CPU
time, database time, and cache fetching time. Graph all three
measurements from the DERP dataset and see which one is at
fault. From there you would jump to the measurements for that
system to narrow down the problem further.

This process of  recursively subdividing a pile of  measure-
ments, guided by both what you see and your mental model
of  the system it’s describing, is almost but not quite mechan-
ical. It’s also not concerned with causes or making up stories
about what you think is wrong. Or, if  you must think about
root causes, flip it around: think about what can’t be true if  the
system is misbehaving in the way you think it is. Then try to
prove or disprove it using the data.
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“I don’t believe in the Performance Fairy.”

Jeff  Rothschild

Notice that I wrote “meaningful changes” and not regres-
sions. Let’s say a new version of  the application is rolled out,
and the average CPU time per hit improves by 10%. That’s great,
right? High-fives all round and break for lunch? Not if  you weren’t
expecting it. There are lots of  possible reasons for a sudden per-
formance improvement, and very few of  them are good.

• Crashing is cheap. Some transactions might be fataling
early. Check the error rates.

• Perhaps there are no errors logged, but no data returned
either. Check the overall volume of  “network egress”,
bytes flowing out of  the system. Check the average bytes
sent out per transaction. Check the distribution.

• Another culprit could be a flood of  new, very cheap hits
that skew the averages. Internal health checks are a fa-
vorite way to cause measurement bugs.

• Did you buy some new, faster servers?

• Did you turn off  some old, slower servers?

• Did some servers just die?

These are examples, not hard & fast rules. We’re not looking
for “the” way to diagnose. It’s more like the game of  Twenty
Questions. Two people will start from different points and go
by different routes, but end up at the same conclusion. Unifor-
mity of  the process doesn’t matter, only convergence. The im-
portant thing is to have a flexible, layered measurement regime
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that allows you to check on your hypotheses, and, like Twenty
Questions, quickly eliminate large swathes of  the field of  pos-
sibilities until you find your bogey.

Think hierarchies
Over time you build up knowledge about failure modes. Any
time an incident is solved using a non-standard metric, or view,
or filter, or what-have-you it should added to a diagnosis tool,
which is essentially a lookup table for common paths taken dur-
ing diagnosis. Here are some metrics that are probably relevant
to any large networked application:

• Error rates

• Latency (average, median, low and high percentiles)

• CPU Time / Instructions

• Network bytes in & out

• Requests per second

• Active users

• Active servers

• Server utilization (CPU, RAM, I/O)

• Database queries

• Cache hit / miss rates

Never mind that you’ve already filled up a giant display and
I’ve surely missed something important. These metrics should
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be further broken down by country, datacenter, WWW versus
API versus mobile, and a half-dozen other dimensions.

Sketch them all out on a big piece of  paper or whiteboard,
then start to group them into hierarchies. Animal, vegetable, or
mineral? What metrics lead to other metrics during diagnosis?
How should they be linked? If  you could “zoom in” on the
data like an interactive map, which small things should become
larger? Which metrics assure the accuracy of  others?

When the is operating abnormally, the
graph can eliminate as a possible cause.

This “diagnosis tool” is something in between the sparse
top-level dashboard and the free-for-all malleable dataset we’ve
built in this book. The minimum possible form it could take is a
collection of  links to views on the data that have proven useful
in the past. There’s a good chance you have something like this
already. Whether it’s in your head, your browser’s bookmarks,
or your operations runbook, take the time to curate and share it
with everyone on your team. It embodies most everything you
know about the real behavior of  your system.

“Correlation doesn’t imply causation, but it does
waggle its eyebrows suggestively and gesture furtively
while mouthing ‘look over there’.”

Randall Munroe, xkcd.com/552
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11: Wholesale Optimization

“Civilization advances by extending the number of
important operations which we can perform with-
out thinking about them.”

Alfred North Whitehead, Symbolism: Its Meaning
And Effect

The most powerful tool of  the computer programmer is the
computer itself, and we should take every chance to use it. The
job of  watching the graphs is important but time-consuming
and errorful. The first instinct of  any programmer who has had
that duty is automation. The second instinct is usually to solve
it with thresholds, eg 1,400 msec for walltime, and trigger an
alarm or email when a threshold is crossed.

For every difficult problem there is a solution which is sim-
ple, obvious, and wrong. Red lines, pressure gauges, and flash-
ing lights are familiar movie tropes that create an air of  urgency
and importance. But, considering everything else Hollywood
writers get wrong about computers, we should think very care-
fully about taking design cues from them.

Alert readers will notice three problems with static thresh-
olds. First, a dependency on clairvoyance snuck in the back
door: how do you decide what number to use? Second, there’s
only one number! The performance characteristics of  internet
applications vary hour-by-hour. The third problem is more sub-
tle: you probably want to know when the metric you’re watch-
ing falls below the expected range, too.

Static thresholds do make sense when making promises about
your system to other people. Service Level Agreements (SLAs)
often include specific response time promises, eg “The API will

63



always respond in less than 500 msec”. But that’s business, not
science. Declaring an acceptable limit doesn’t help you learn
what actually happens. You can’t have anomaly detection with-
out first discovering what defines an anomaly.

When you come across fancy names like “anomaly detec-
tion” and “fault isolation”, it’s a good bet that the literature is
full of  fancy ways to implement it. A quick search for that term
reveals that you can choose among replicator neural networks,
support vector machines, k-nearest neighbor, and many more.

The simplest way to get the job done is to choose a handful
of  metadata and measurements that tend to have the most im-
pact on performance. Time is the first and most obvious one.
Then comes the transaction type (eg script_path), the machine
or group of  machines (host, datacenter), the version of  the soft-
ware (build_number) and so on. For each combination of  those
dimensions, create a few metrics that characterize the perfor-
mance envelope: say, the 25th, 75th, and 99th percentiles of
walltime and cpu_time. You want the same kind of  informa-
tion that is on your dashboard, just more of  it.

Given those metrics you can determine what values are “nor-
mal” for various times of  the day by looking at historical data.
If  the 99th percentile walltime for /foo.php between 2:20PM
and 2:40PM for the last few Wednesdays was 455 msec, then
throw an alarm if  this Wednesday at 2:25pm the metric deviates
too much from what the data predicts, on a percentage basis or
something fancier like the root mean square error.

How much is too much? You can run experiments to dis-
cover how many alarms would have been thrown for a given
range. Hold back one day (or week) of  historical data from the
learning set and run your detection code over it. How much
noise you’re willing to put up with is up to you.
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Garbage in, garbage out
Before you get too excited, I should point out that none of  this
matters if  you don’t already have a good mental model of  your
system’s behavior, informed by the data. Take it slowly. Au-
tomating a bad manual process will only create a bad automatic
process.

It’s a common mistake to jump right to the reporting stage
and skip over the hard work of  defining the problem and discov-
ering the sources of  meaningful insight peculiar to the system
you are responsible for. Time of  day and day of  week are huge
factors in performance. We can guess at what the others will
be, but the only way to know for sure is to obsess over the data.

Done right, you’ll incrementally replace graph-watching, an
important part of  your job, with a small shell script. Done wrong,
you’ll create an autopilot that will happily crash into a moun-
tain. It might happen anyway as conditions change and new
factors pop up. Everybody forgets about DNS, kernel versions,
and internal network bandwidth until they cause trouble.

However you decide to implement anomaly detection, keep
it simple. It doesn’t have to be smarter than a human. It only
has to be more complete and easily extended.

Don’t stop there
What happens after a graph goes wild and an alarm is thrown?
It’s very often the case that multiple alarms will have one cause,
and vice-versa. For example, a sharp increase in cpu_time will
probably also cause an increase in walltime. Ditto for a database
problem which increases the time spent waiting for the databases
to respond to queries. One way to coalesce redundant alarms is
by noting the overlaps between the sets of  anomalous samples,
especially in time.
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Another way to make alarms smarter is to burrow deeper
into the data. Once an alarm condition is met, say overall wall-
time, your monitoring system could quickly try many combi-
nations of  dimensions in that set of  samples to see whether
the anomaly can be localized further, say by datacenter or user
type. This is similar to the “almost mechanical” recursive sub-
dividing of  the dataspace discussed earlier on in the book.

And there goes most of  the tedious work: discovering that
there is a problem in the first place, and narrowing it down to
likely spots.

The hidden benefit of  a learning system like this is what it
will tell you about the measurement system itself. You will al-
most certainly find data quality problems, measurement bugs,
and math errors. Actually using all of  the data, not just man-
ually spot-checking pretty graphs, is like running a test suite
on your measurement code. And once all those bugs are fixed,
you’ll have no choice but to accept the fact that the system
you’re measuring has a lot more variance than you expected,
even when it’s running “normally”.

“When you successfully use a computer you usu-
ally do an equivalent job, not the same old one...
the presence of  the computer, in the long run, changed
the nature of  many of  the experiments we did.”

Richard Hamming, The Art of  Doing Science & Engi-
neering
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12: Feedback Loops

“A hallucination is a fact, not an error; what is er-
roneous is a judgment based upon it.”

Bertrand Russell, On The Nature of  Acquaintance

Sooner or later, someone on your team is going to try to
feed a system’s performance data back into itself, and teach it
to react. This is simultaneously a wonderful and terrible idea,
fully into the realm of  control theory.

The general technique has been around for ages. The float
in a toilet tank, which raises with water level and controls the
flow of  water in, works on the same principle. In the graphics
world, closed loop calibration is used to make sure what you
see on a monitor is what you get on the printer. Every serious
measurement device has calibration designed into it.

There are good places and bad places for this sort of  ad-
vanced nerdery. Aside from general correctness, feedback loops
for distributed computer systems come with three hard prob-
lems you have to solve: reaction time, staircase mode, and os-
cillation.

Reaction time means how quickly the entire system can react
to changes in the feedback it’s collecting. Gathering 5 minutes’
worth of  data will obviously limit your loop’s reaction time to
five minutes, unless you calculate some kind of  moving aver-
age. There is also propagation delay: we like to pretend that
state changes happen in an instant. But the more computers
you have, the less and less that’s true.

Staircase mode is a quality you want to design for. Elevators
don’t have great failure modes. Escalators, on the other hand,
never really break. They just become staircases. When your
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feedback loop fails, and it will, think about whether it becomes
a staircase or a death trap.

Oscillation happens when one or more components overcom-
pensate. Think of  those awkward moments when you and some-
one walking in the opposite direction get in each other’s way.
You step to one side but a fraction of  a second later they do
too. So you step the other way, but before you can react they
follow, etc.

Adaptive sampling

Suppose that at peak hour you get so much traffic that your
measurement system can’t keep up. So you sample down the
stream of  data, say 1:10. But given that sampling rate, at the
trough hour there isn’t enough data to make meaningful de-
cisions from. It would be nice to keep the volume of  samples
constant and vary the sample rates instead. At peak it goes to
1:10; at trough perhaps 1:3.

Implementing this doesn’t sound too hard. You maintain a
moving average of  the sample volume and every few minutes
adjust the rate to keep the volume steady. Oh! And build sep-
arate sample rates and counters for different datacenters. And
also script_paths, so you can ditch uninformative samples in
favor of  oversampling the rare hits.

On a regular basis you will have to update the sampling con-
figuration across all the servers in your fleet. The delay of  col-
lecting the volumes and distributing new rates may be on the
order of  minutes. If  the loop breaks at midnight in the trough,
that high sample volume may overwhelm you at the peak. You
can mitigate these problems but only through more complica-
tion.
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In my opinion, a feedback loop for sampling is overkill. Your
diurnal cycle of  traffic volume is probably well-known and pre-
dictable. The ratio of  traffic among your datacenters and types
of  transactions is usually predictable too. You could just look
at the last few week’s of  data and build a curve of  “rate multi-
pliers” for every 30-minute chunk of  the day. You only need to
recalculate that curve every few weeks, at most.

Live load testing

Let’s say you want to optimize a system for throughput, eg,
how many transactions it can handle through per second, within
some bound of  acceptable response time. In the production sys-
tem you may only reach that red line once per day, if  ever. You
could make up a model in the lab to simulate load by replaying
traffic, but that has its own set of  problems.

One way is to constantly push a small number of  production
machines to the red line, with real traffic, and keep them there.
The efficiency of  your system can be measured by the transac-
tions per second those loaded machines perform. These loaded
production boxes can be available all the time for iterative tests,
especially configuration tuning.

First you define the red line for your system, the point past
which performance is unacceptable. Let’s say you think a 500
ms median response time should be the limit.

Now you build a feedback loop between the server you’re
going to overload and the load balancer that gives it traffic. The
load balancer measures the response time over some period. As
long as the 30-second median is under 500 ms it will incremen-
tally send the server a larger and larger proportion of  the traffic.
When the response time goes over, the load balancer backs off
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a little to help it recover. This works well primarily because the
feedback loop is simple and short.

This brings us next to a measurement system developed at
Facebook called “Dyno”.7 It helps benchmark the efficiency of
the web server tier by holding every factor constant –the code
being run, the traffic mix, compiler, hardware, configuration,
etc– so that you can change one thing at a time to see how it
affects peak performance, as measured by requests per second
(RPS).

Let’s say there is a new release of  the application to test.
Push it to half of  the load test pool, so you are running two
versions of  the app concurrently. Then you can compare the
RPS of  the old and new versions side-by-side to see if  there is
an improvement or regression.

Global traffic routing
You know what could use a giant, complicated feedback loop?
Yes. The motherlovin’ internet.

When you have a lot of  datacenters and users all over the
world, an important problem is how to route the right user to
the right datacenter. There’s a lot of  trickery in defining “right”.

7fb.me/dyno-paper
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One layer of  the “Cartographer” system measures the net-
work latency between users (grouped by DNS resolver) and
various datacenters around the planet. No geographic informa-
tion is used; only packet round-trip times (RTT). Assuming that
one datacenter will be faster for most of  the users behind a given
resolver, you can use your DNS system to send the users to that
one. Global internet routing tends to change slowly (though
specific routes change quite fast) so the feedback loop can be
hours or even days in length.

But life is never that simple. Humans are not evenly dis-
tributed around the world, and datacenters have only so much
capacity. If  you were to direct traffic solely on RTT, odds are
good it will be unbalanced, overwhelming whichever datacenter
happens to be closest to the most users. So there is a second con-
straint, the available capacity of  each building full of  servers to
send traffic to.
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The feedback loop, then, has to be able to spread load to sat-
isfy both constraints. This is done by dynamically changing the
answers your DNS servers give out in response to domain name
lookups. If  resolver 1234 is closest to datacenter A, but A is at
capacity, the DNS server would respond with the IP address
of  datacenter B, a bit farther away but with RPS to spare. That
means the DNS server (more precisely, the system that gen-
erates the DNS maps) needs accurate, recent feedback about
datacenter health.

So far so good. Let’s code that up. How hard could it be?

“ This is the best one I can find. I sadly don't have the habit of
snapshotting crazy graphs when I see them.
The orange and blue lines are two clusters running a really early
version of Cartographer. The feedback loop was not well timed;
you can see it drastically over/under correcting. This was Car-
tographer failing to account for DNS propagation delay and
data-point delay in our measurement system. The combination
caused brutal oscillation.
Orange would shed load and the traffic would dump into blue.
Then the inverse would happen a few minutes later when Car-
tographer finally got data informing it just how screwed up
things were.
-- Alex Laslavic
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When it was first turned on, Cartographer started sloshing
more and more traffic around the internet until Alex had to
turn it off. There were two bugs in the system working together.

The system which measured capacity utilization was too
slow. It took minutes to gather enough data, and dumped it
out every 5 minutes. Cartographer would suddenly see a large
imbalance and issue a change in the map to correct it. Always
too late.

Compounding the problem, and the reason the oscillations
increased in magnitude with each swing, was that this early ver-
sion of  the software assumed that its orders would be carried
out immediately. Generating the new map and pushing it to the
DNS servers was actually pretty fast; they would start answer-
ing DNS lookups according to what Cartographer told them to
as soon as the file copied over. But DNS resolvers, owned not by
Facebook but by ISPs around the world, cache the results of  old
lookups for quite a while. There are many layers of  caching all
the way down to the user’s computer. It’s built into the design
of  the domain name system.

Fixing this feedback loop meant fixing both the response
time and Cartographer’s assumptions about how the internet
works. Straightforward engineering got the measurement sys-
tem’s latency down to less than 30 seconds so Cartographer
could work with fresher data.

Then Alex had to measure and model DNS propagation de-
lay, ie, how quickly a change is reflected by the global popula-
tion of  DNS resolvers. He started with a domain that pointed
all requests to datacenter A. Then he changed it to point to
datacenter B. Then he observed how long it took for the traffic
to move over.
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It turns out that DNS propagation is reasonably similar to
exponential radioactive decay. Cached DNS queries have a mea-
surable half-life. If  it takes N minutes for half  of  the traffic to
switch over, at 2N minutes only one-quarter remains, at 3N
one eighth, and so on. Incorporating that model into Cartogra-
pher allowed it to predict ahead of  time how the whole system
should look, and refrain from overcorrecting. Here is the chart
from a cluster trying to hit a specific volume of  traffic.
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13: Starting Over

“Those are my principles. If  you don’t like them, I
have others.”

Groucho Marx (attributed)

Throughout this book we’ve relied on a particular point of
view about the nature of  performance optimization. It’s time
to haul it into the light.

The goal is to reliably make a system more effi-
cient in time, compute, memory, etc. Only a frac-
tion of  the code matters for this, hence the term
“bottleneck”. A continuous cycle of  measurement
to find high-leverage spots and isolated fixes for
them works best.

As a problem definition it’s not very good. The test at the
end doesn’t really address the assertions, and isn’t obviously
falsifiable. There’s a lot of  slipperiness packed into the words
“reliably” and “best”.

The reductionism on display here should be a red flag to
anyone with a sense of  history. Breakthroughs happen. You
never know when one might be just beyond the horizon. Tweak-
ing sorting algorithms for better performance used to be seri-
ous & vital work, something of  a competitive sport among pro-
grammers. But once Tony Hoare invented quicksort it was all
over but the shouting. 8

8Even better results have appeared over the last 55 years, but almost all
of  them are elaborations or hybrids of  the basic idea.
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Breakthroughs happen unpredictably. Even if  you’re only
talking about ideas that are not new but new to you, you can’t
count on finding them when you need to. But we can talk about
times starting over turned out to be a good idea. Maybe it’s pos-
sible to recognize signs that a redesign is needed.

Incidental vs. Fundamental

There seem to be two rough categories of  bottleneck. Incidental
bottlenecks tend to be isolated and fixable without much fuss.
Even if  they require a lot of  clever work to implement, they
don’t threaten to upend the basic premises of  your design, and
their magnitudes can be large. This is the happy case. I wish
you a long career of  easy wins from this end of  the spectrum.

Fundamental bottlenecks are harder to fix, and harder to
see, because they are caused by some fact of  nature or an as-
sumption the system is built around. An infinitely-fast network
application is still subject to the speed of  light. A pizza shop’s
fundamental bottleneck is the size of  its oven. Rockets are lim-
ited by the need to lift the weight of  their own fuel.

Once a fundamental bottleneck is identified, you have to de-
cide whether it’s possible to remove it without collapsing the
rest, and whether that’s worth doing. You should be able to
take an educated guess at the magnitude of  the potential win.
Systems analysis comes back onto the stage, plus a healthy slug
of  creativity & judgement.

Software has a present value and future value, however dif-
ficult they are to quantify. Rewrites can’t be decided solely on
technical merits. In theory you could take any existing piece
of  software, clone it in assembler and end up with a faster pro-
gram... written in assembler.
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NoSQL in SQL
Often the bottleneck is a product of  old cruft, ideas the system
was shaped to handle but that are no longer necessary. Engi-
neering practice changes surprisingly slowly compared to facts
on the ground, but you should be careful to throw out only the
bits that are obsolete.

FriendFeed, a link-sharing service, had a database problem.
They’d done all the usual things to handle increasing data size
and traffic: sharding across many machines, caching when it
made sense. It turned out that scaling the software and data
model they had wasn’t a big deal. The big deal was that their
model was hard to change.

“ In particular, making schema changes or adding indexes to a
database with more than 10-20 million rows completely locks
the database for hours at a time. Removing old indexes takes
just as much time, and not removing them hurts performance...
There are complex operational procedures you can do to cir-
cumvent these problems... so error prone and heavyweight,
they implicitly discouraged adding features that would require
schema/index changes...
MySQL works. It doesn't corrupt data. Replication works. We
understand its limitations already. We like MySQL for storage,
just not RDBMS usage patterns.
-- Bret Taylor
backchannel.org/blog/friendfeed-schemaless-mysql

Their business was built around a particular database, and
that database had become a bottleneck for performance tuning
and adding new features. It was so hard to change the table
schemas that they often just didn’t do it. There were plenty of
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other things they liked about MySQL and at the time (2008)
there weren’t many solid alternatives. So instead of  betting the
company on a completely new kind of  oven, they decided to
ditch the features they didn’t need through creative abuse of
the system.

FriendFeed’s initial data model was probably what you’d ex-
pect in production relational databases, somewhere in between
2nd and 3rd Normal Form.

CREATE TABLE items (

id string,

user_id string,

feed_id string,

title string,

link string,

published int,

updated int,

...

CREATE TABLE users (

id string,

name string,

created int,

...

They had already sharded these tables over many machines,
so an item with id 1234 would live on database A while the
owner of  that data would live on database Q. That meant joins
and subqueries were already off  the table, so to speak. Their
application was used to running a “query” as set of  sharded
queries it would assemble later.

Much of  the point of  row-oriented table schemas is that the
data can be stored in a compact form. This in turn makes com-
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plex manipulations at the database layer more efficient. The
downside is that they can only be changed by dumping the data
and loading it all back in. It’s another case of  trading clairvoy-
ance for speed, and it often makes sense. But if  you’re not us-
ing those features of  the database, then there’s no need to chain
yourself  to their limitations.

After lots of  testing and discussion, FriendFeed moved to
a “bag of  words” model that stored their data in an opaque
BLOB, and used auxiliary index tables for the dimensions they
wanted to index on. All MySQL knew about was an entity’s
id and timestamp.9 The BLOB contained binary data (com-
pressed Python objects) that only the application needed to
know about.

CREATE TABLE entities (

id BINARY(16) NOT NULL,

updated TIMESTAMP NOT NULL,

body MEDIUMBLOB,

UNIQUE KEY (id),

KEY (updated)

) ENGINE=InnoDB;

At this point they had a key / value store that’s efficient for
retrieving objects if  you know the id, and perhaps for retrieving
them by a time range. They could change the “schema” simply
by writing new fields into the opaque BLOB field. As long as
the application understands the format, the database doesn’t
care. To make this more useful, say for finding all entries by a
given user, they added an index table and populated it.

9There was also an autoincrement primary key field to force the storage
engine to write entries in the order they were inserted.
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CREATE TABLE index_user_id (

user_id BINARY(16) NOT NULL,

entity_id BINARY(16) NOT NULL UNIQUE,

PRIMARY KEY (user_id, entity_id)

) ENGINE=InnoDB;

Since creating or dropping a table doesn’t affect other tables
this is quick and atomic. They had a background process read
from the entities table and populate the index table. Once that
was done, getting all recent entries from a user could be done
in two fast queries:

SELECT entity_id

FROM index_user

WHERE user_id = [S]

SELECT body

FROM entities

WHERE updated >= [N]

AND entity_id IN (...)

To build the “friend feed” of  recent links shared by your
friends, they could intersect the results of  three queries:

SELECT user_id

FROM index_friend

WHERE friend_id = [S]

SELECT entity_id

FROM index_user

WHERE user_id IN (...)
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SELECT body

FROM entities

WHERE updated >= [N]

AND entity_id IN (...)

Complex queries with compound indexes become a series of
fast unique-key lookups. The act of  adding or deleting indexes
was decoupled from serving production traffic. There are many
elaborations you could add to a design like this. Most queries
have a time component. Adding a timestamp to all of  the index
tables should shrink the number of  entity_ids the application
needs to intersect. The important thing is they could now try
it and see, by creating a new index table alongside the old one,
without first suffering through a week-long schema migration.

The hidden coup of  FriendFeed’s storage rewrite was in-
creased predictability of  the system’s performance. Because they
were able to use exactly the right unique-key indexes, in the
right order, the range of  response times got narrower. Before
they had been stuck trying to handle all query combinations
with a few hard-to-change compound indexes. That meant that
many queries were suboptimial, causing large swings in perfor-
mance.
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Shrinking the variance of  your system’s response time, even
if  it makes the average slower, is a huge win that spreads good
effects all over the place. It makes load balancing that much eas-
ier because units of  work are more interchangable. It reduces
the possibility of  server “spikes”, temporary imbalances, filled
queues, etc etc and so forth. If  you could magically optimize a
single metric in any system, it should be the standard deviation.
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Where to Look Next

“As I’ve said, much of  this advice –in particular,
the advice to write a good clean program first and
optimize it later– is well worn... For everyone who
finds nothing new in this column, there exists an-
other challenge: how to make it so there is no need
to rewrite it in 10 years.”

Martin Fowler (10 years ago), Yet Another Optimiza-
tion Article

Don’t stop now! There are many books on computer perfor-
mance, but there’s also a rich & relevant literature outside our
field. For example, Mature Optimization does not include very
much material about statistics or sampling, because I felt I could
not treat the subject as it deserves.

Structured Programming With go to Statements: This paper
is the source of  the phrase “premature optimization”. The title
sounds dry today, but it was meant to be provocative, bang-
ing together two incompatible ideas, something like “Monadic
Programming In Assembler”. The holy war over gotos is long
dead, but the social causes of  the silliness Knuth was trying to
counter are very much alive.

Principles of Experiment Design & Measurement: This book
is a little gem, an introduction to experimental discipline in the
physical sciences. Goranka Bjedov lent me a copy by chance,
and precipitated the writing of  this book.

How Complex Systems Fail: Richard Cook is one of  the most
interesting and influential writers about operations research.
This is his most famous essay about the nature of  failure and
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system degradation, which was reproduced in John Allspaw’s
book Web Operations.
http://www.ctlab.org/documents/Ch+07.pdf

The Goal: I’ve always felt that logistics is the closest cousin to
computer engineering. They have all the same problems, just
with atoms instead of  bits. The best introduction is probably
Eliyahu Goldratt’s The Goal. It’s written as a novel: the story
of  factory manager Alex Rogo and how he turns his widget
factory around.

Now You See It: Stephen Few writes big beautiful coffee-table
books about visualizing data in meaningful ways.

Programmers Need To Learn Stats Or I Will Kill Them All:
Zed Shaw’s modest thoughts on the utility of  measurement and
statistics for applied computer science.
zedshaw.com/essays/programmer_stats.html

Think Stats: Probability and Statistics for Programmers:
This book is intended as an introductory text, and follows a
single case study drawing on a large set of  demographic data.
thinkstats.com

Handbook of Biological Statistics: This is a quite good survey
of  statistical tools and thinking which came out of  the biology
department of  the University of  Delaware.
udel.edu/m�cdonald/statintro.html

Statistical Formulas For Programmers: Evan Miller has posted
many helpful ideas and explanations on his blog, and also wrote
Wizard, a simple application for exploring and visualizing data.
evanmiller.org/statistical-formulas-for-programmers.html

Characterizing people as non-linear, first-order components
in software development: In 1999 Alistair Cockburn published
one of  those rare papers that says everything it needs to say in
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the title. Software is not merely made by people; it is made of
people, and so understanding people is as important as data
structures and algorithms.
a.cockburn.us/1715

The Art of Doing Science & Engineering: Nearly every time I
have had a good idea about what happens at the intersection of
humans and computers, it turns out that Richard Hamming al-
ready said it, more clearly, before I was born. This book about
“learning to learn” was developed from a course he taught for
many years at the US Naval Postgraduate School.
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Thank You

Too many people to list helped with this book. Special thanks to
Bret Taylor, Keith Adams, Alex Laslavic, and Jordan Alperin
for permission to quote them in detail. Goranka Bjedov is to
blame for the idea of  writing a short book on measurement.
Adam Hupp, Mark Callaghan, Okay Zed, Shirley Sun, Janet
Wiener, Jason Taylor, & John Allen all gave valuable advice
and corrections. Boris Dimitrov deserves extra praise for gently
leading me realize that I know next to nothing about statistics.
This project could not have happened at all without the help of
Alex Hollander, Tom Croucher, and Alma Chao.

And thank you for reading. I hope it was interesting.
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